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Abstract

The fractional Hilbert transform was introduced by Zayed [30, Zayed, 1998] and has
been widely used in signal processing. In view of its connection with the fractional
Fourier transform, Chen, the first, second and fourth authors of this paper in [6, Chen
et al., 2021] studied the fractional Hilbert transform and other fractional multiplier op-
erators on the real line. The present paper is concerned with a natural extension of
the fractional Hilbert transform to higher dimensions: this extension is the fractional
Riesz transform and is given by multiplication which a suitable chirp function on the
fractional Fourier transform side. In addition to a thorough study of the fractional
Riesz transform, in this work we also investigate the boundedness of singular integral
operators with chirp functions on rotation invariant spaces, chirp Hardy spaces and
their relation to chirp BMO spaces, as well as applications of the theory of fractional
multipliers in partial differential equations. Through numerical simulation, we provide
physical and geometric interpretations of high-dimensional fractional multipliers. Fi-
nally, we present an application of the fractional Riesz transforms in edge detection
which verifies a hypothesis insinuated in [26, Xu et al., 2016]. In fact our numeri-
cal implementation confirms that amplitude, phase, and direction information can be
simultaneously extracted by controlling the order of the fractional Riesz transform.
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1. Introduction

One of the fundamental operators in Fourier analysis theory is the Hilbert transform

H( f )(x) =
1
π

p.v.
∫
R

f (y)
x − y

dy,

which is a continuous analogue of the conjugate Fourier series. The early studies of
the Hilbert transform were based on complex analysis methods but around the 1920s
these were complemented and enriched by real analysis techniques. The Hilbert trans-
form, being the prototype of singular integrals, provided significant inspiration for the
subsequent development of this subject. The work of Calderón and Zygmund [3] in
1952 furnished extensions of singular integrals to Rn. This theory has left a big impact
in analysis in view of its many applications, especially in the field of partial differential
equations. Nowadays, singular integral operators are important tools in harmonic anal-
ysis but also find many applications in applied mathematics. For instance, the Hilbert
transform plays a fundamental role in communication systems and digital signal pro-
cessing systems, such as in filter, edge detection and modulation theory [12, 13]. As
the Hilbert transform is given by convolution with the kernel 1/(πt) on the real line, in
signal processing it can be understood as the output of a linear time invariant system
with an impulse response of 1/(πt).

The Fourier transform is a powerful tool in the analysis and processing of stationary
signals.
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Definition 1.1. We define the Fourier transform of a function f in the Schwartz class
S (Rn) by

f̂ (ξ) = F ( f )(ξ) =
1(√
2π

)n

∫
Rn

f (x)e−ix·ξdx.

In time-frequency analysis, the Hilbert transform is also known as a π/2-phase
shifter. The Hilbert transform can be defined in terms of the Fourier transform as the
following multiplier operator

F (H f )(x) = −isgn(x)F ( f )(x). (1.1)

It can be seen from (1.1) that the Hilbert transform is a phase-shift converter that mul-
tiplies the positive frequency portion of the original signal by −i; in other words, it
maintains the same amplitude and shifts the phase by −π/2, while the negative fre-
quency portion is shifted by π/2.

The Riesz transform is a generalization of the Hilbert transform in the n-dimensional
case and is also a singular integral operator, with properties analogous to those of the
Hilbert transform on R. It is defined as

R j( f )(x) = cn p.v.
∫
Rn

x j − y j

|x − y|n+1 f (y)dy, 1 ≤ j ≤ n,

where cn = Γ( n+1
2 )/π

n+1
2 . The Riesz transform is also a multiplier operator

F (R j f )(x) = −
ix j

|x|
F ( f )(x).

Remark 1.1. The multiplier of the Hilbert transform is −isgn(x), and it is simply a
phase-shift converter. The multiplier of the Riesz transform is −ix j/|x|, and thus, the
Riesz transform is not only a phase-shift converter but also an amplitude attenuator.

The Riesz transform has wide applications in image edge detection, image quality
assessment and biometric feature recognition [16, 33, 34].

The Fourier transform is limited in processing and analyzing nonstationary signals.
The fractional Fourier transform (FRFT) was proposed and developed by some schol-
ars mainly because of the need for nonstationary signals. The FRFT originated in the
work of Wiener in [29]. Namias in [20] proposed the FRFT through a method that
was primarily based on eigenfunction expansions in 1980. McBride-Kerr in [19] and
Kerr in [14] provided integral expressions of the FRFT on S (R) and L2(R), respec-
tively. In [6], Chen, and the first, second and fourth authors of this paper, established
the behavior of FRFT on Lp(R) for 1 ≤ p < 2.

A chirp function is a nonstationary signal in which the frequency increases (up-
chirp) or decreases (downchirp) with time. The chirp signal is the most common non-
stationary signal. In 1998, Zayed in [30] gave the following definition of the fractional
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Hilbert transform

Hα( f )(x) =
1
π

p.v. e−α(x)
∫
R

f (y)
x − y

eα(y)dy,

where eα(x) = e
ix2 cotα

2 is a chirp function.
In [22], Pei and Yeh expressed the discrete fractional Hilbert transform as a com-

position of the discrete fractional Fourier transform (DFRFT), a multiplier, and the
inverse DFRFT; based on this they conducted simulation verification on the edge de-
tection of digital images. In [6], Chen, and the first, second and fourth authors of this
paper related the fractional Hilbert transform to the fractional Fourier multiplier

Fα(Hα f )(x) = −isgn((π − α)x)Fα( f )(x),

where Fα is FRFT; see Definition 1.2. In analogy with the Hilbert transform, the
fractional Hilbert transform is also a phase-shift converter. As indicated above, the
continuous fractional Hilbert transform can be decomposed into a composition of the
FRFT, a multiplier, and the inverse FRFT. The fractional Hilbert transform can also
be used in single sideband communication systems and image encryption systems.
The rotation angle can be used as the encryption key to improve the communication
security and image encryption effect in [28].

The multidimensional FRFT has recently made its appearance: Zayed [31, 32]
introduced a new two-dimensional FRFT. In [15], Kamalakkannan and Roopkumar
introduced the multidimensional FRFT.

Definition 1.2. ([15]) Let αk be real numbers. The multidimensional FRFT with order
α = (α1, α2, . . . , αn) on L1(Rn) is defined by

Fα( f )(u) =

∫
Rn

f (x)Kα(x,u)dx,

where Kα(x,u) =
∏n

k=1 Kαk(xk, uk) and Kαk(xk, uk) are given by

Kαk(xk, uk) =


c(αk)
√

2π
ei(a(αk)(x2

k+u2
k−2b(αk)xkuk)), αk < πZ,

δ(xk − uk), αk ∈ 2πZ,
δ(xk + uk), αk ∈ 2πZ + π,

x = (x1, x2, . . . , xn), a(αk) =
cot(αk)

2 , b(αk) = sec(αk), c(αk) =
√

1 − i cot(αk).

Remark 1.2. Suppose that α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ for all k =

1, 2, . . . , n. Consider the chirps

eα(x) = ei
∑n

k=1 a(αk)x2
k ,

4



for x = (x1, . . . , xn) ∈ Rn. It is straightforward that the FRFT of f can be written as

Fα( f )(u) = c(α)eα(u)F (eα f )(ũ),

where c(α) = c(α1) · · · c(αn), ũ = (u1 cscα1, . . . , un cscαn). From the preceding iden-
tity, it can be seen that Fα is bounded from S (Rn) to S (Rn). We rewrite

Kα(x,u) =
c(α)(√

2π
)n eα(x)eα(u)e−i

∑n
k=1 xkuk cscαk .

We now define the fractional Riesz transform associated with the multidimensional
FRFT as follows:

Definition 1.3. For 1 ≤ j ≤ n, the jth fractional Riesz transform Rαj is defined on the
FRFT side by multiplication by the function −i ũ j

|ũ| . That is, for any f ∈ S (Rn),

Fα

(
Rαj f

)
(u) = −i

ũ j

|ũ|
Fα ( f ) (u),

where α = (α1, . . . , αn) ∈ Rn with αk < πZ, k = 1, 2, . . . , n; u = (u1, . . . , un) and
ũ = (u1 cscα1, . . . , un cscαn) = (ũ1, . . . , ũn).

This paper is organized as follows. In Section 2, we obtain characterizations of the
fractional Riesz transform in terms of the FRFT and we note that the fractional Riesz
transform is not only a phase shift converter but also an amplitude attenuator. We
identify behavior of the fractional Riesz transform in terms of dilations, translations,
modulations, and chirp multiplications. We obtain the identity

∑n
j=1(Rαj )2 = −I and the

boundedness of singular integral operators with a chirp function on rotation invariant
spaces. In Section 3, we derive a formula for the high-dimensional FRFT and we pro-
vide an application of the fractional Riesz transform to partial differential equations. In
Section 4, we conduct a simulation experiment with the fractional Riesz transform on
an image and give the physical and geometric interpretation of the high-dimensional
fractional multiplier theorem. In Section 5, we discuss a situation where it is difficult
to directly use the fractional Riesz transform for edge detection but the fractional mul-
tiplier theorem provides this possibility. The use of the fractional Riesz transform is
completely equivalent to the compound operation of the FRFT, inverse FRFT and mul-
tiplier, and the FRFT and inverse FRFT can realize fast operations. In Section 6, we
introduce the definition of the chirp Hardy space by taking the Possion maximum for
the function with the chirp factor and study the dual spaces of chirp Hardy spaces. We
also characterize the boundedness of singular integral operators with chirp functions
on chirp Hardy spaces.

2. Fractional Riesz transforms
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2.1. Properties of the fractional Riesz transforms
Theorem 2.1. For 1 ≤ j ≤ n, the jth fractional Riesz transform of f ∈ S (Rn) is given
by

Rαj ( f )(x) = cn p.v. e−α(x)
∫
Rn

x j − y j

|x − y|n+1 f (y)eα(y)dy, x ∈ Rn,

where cn = Γ( n+1
2 )/π

n+1
2 and α = (α1, . . . , αn) ∈ Rn with αk < πZ, k = 1, 2, . . . , n.

Proof. Fix a f ∈ S (Rn). For 1 ≤ j ≤ n, we have

Fα

(
Rαj f

)
(u) =

∫
Rn

Rαj f (x)
c(α)(√

2π
)n eα(x)eα(u)e−i

∑n
j=1 x ju j cscα jdx

=

∫
Rn

Γ( n+1
2 )

π
n+1

2

e−α(x) lim
ε→0

∫
|y|≥ε

y j

|y|n+1 f (x − y)eα(x − y)dy

×
c(α)(√

2π
)n eα(x)eα(u)e−i

∑n
j=1 x ju j cscα jdx

=
Γ( n+1

2 )

π
n+1

2

lim
ε→0

∫
|y|≥ε

y j

|y|n+1

∫
Rn

f (x − y)eα(x − y)
c(α)(√

2π
)n eα(u)

× e−i
∑n

j=1 x ju j cscα jdxdy.

Changing variables yields

Fα

(
Rαj f

)
(u) =

Γ(n+1
2 )

π
n+1

2

lim
ε→0

∫
|y|≥ε

y j

|y|n+1

∫
Rn

f (w)eα(w)
c(α)(√

2π
)n eα(u)

× e−i
∑n

j=1(y j+w j)u j cscα jdwdy

=
Γ(n+1

2 )

π
n+1

2

lim
ε→0

∫
|y|≥ε

y j

|y|n+1 e−i
∑n

j=1 y ju j cscα jdy
∫
Rn

c(α)(√
2π

)n

× f (w)eα(u)eα(w)e−i
∑n

j=1 w ju j cscα jdw

=
Γ(n+1

2 )

π
n+1

2

Fα( f )(u) lim
ε→0

∫
|y|≥ε

y j

|y|n+1 e−i
∑n

j=1 y ju j cscα jdy

=
Γ(n+1

2 )

π
n+1

2

Fα( f )(u) lim
ε→0

∫
ε≤|y|≤ 1

ε

y j

|y|n+1 e−iy·ũdy.

Switching to polar coordinates and using Lemma 5.1.15 in [10] we obtain

Fα

(
Rαj f

)
(u) =

−iΓ(n+1
2 )

π
n+1

2

Fα( f )(u) lim
ε→0

∫
sn−1

∫
ε≤r≤ 1

ε

sin(rũ · θ)
r

rn+1 rn−1drθ jdθ
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=
−iΓ(n+1

2 )

π
n+1

2

Fα( f )(u)
∫

sn−1

∫ ∞

0
sin(rũ · θ)

dr
r
θ jdθ

=
−iΓ(n+1

2 )

2π
n−1

2

Fα( f )(u)
∫

sn−1
sgn(ũ · θ)θ jdθ

= − i
ũ j

|ũ|
Fα( f )(u),

and this completes the proof of the theorem. �

Remark 2.1. The fractional Riesz transform reduces to the fractional Hilbert transform
for n = 1, while the fractional Riesz transform reduces to the classical Riesz transform
for α = (π2 + k1π,

π
2 + k2π, . . . ,

π
2 + knπ), k j ∈ Z, j = 1, 2, . . . ,m.

Next, we examine how the fractional Riesz transform interacts with respect to the
operations of dilation, translation, modulation, and chirp multiplication.

Proposition 2.2. Let α = (α1, . . . , αn) ∈ Rn with αk < πZ, k = 1, 2, . . . , n, and f ∈
S (Rn).

(i) (Dilation) Let β = (β1, . . . , βn) ∈ Rn with βk < πZ, k = 1, 2, . . . , n. For any c > 0,
x ∈ Rn, and c ∈ R, one has

Rαj ( f (c ·)) (x) = Rβj ( f ) (cx),

where a(βk) =
a(αk)

c2 .
(ii) (Translation and modulation) For any h = (h1, . . . , hn) ∈ Rn, and all x ∈ Rn we

have
Rαj ( f (· − h)) (x) = eα(

√
2h)e−ihαxRαj

(
f eihα·

)
(x − h),

where hα = (h1a(α1), . . . , hna(αn)).
(iii) (Chirp multiplication) For all x ∈ Rn the identity below is valid

Rαj (e−α f ) (x) = e−α(x)R j ( f ) (x).

Proof. (i) For any f ∈ S (Rn), by the substitution of variables, it follows that

Rαj ( f (c ·)) (x) = cn p.v. e−α(x)
∫
Rn

x j − y j

|x − y|n+1 f (cy)eα(y)dy

= cn p.v. e−α(x)
∫
Rn

cx j − s j

|cx − s|n+1 f (s)eα
( s
c

)
ds

= cn p.v. eiΣn
k=1a(−αk)x2

k

∫
Rn

cx j − s j

|cx − s|n+1 f (s)eiΣn
k=1

a(αk )

c2 s2
k ds

= cn p.v. eiΣn
k=1a(−βk)(cxk)2

∫
Rn

cx j − s j

|cx − s|n+1 f (s)eiΣn
k=1a(βk)s2

k ds
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= Rβj ( f ) (cx),

where a(βk) =
a(αk)

c2 .
(ii) For any f ∈ S (Rn) and h ∈ Rn, by the substitution of variables, we deduce that

Rαj ( f (· − h)) (x) = cn p.v. e−α(x)
∫
Rn

x j − y j

|x − y|n+1 f (y − h)eα(y)dy

= cn p.v. e−α(x)
∫
Rn

x j − h j − s j

|x − h − s|n+1 f (s)eα(s + h)ds

= cn p.v. e−α(x)eα(h)
∫
Rn

x j − h j − s j

|x − h − s|n+1 f (s)eihαseα(s)ds

= eα(
√

2h)e−ihαxRαj
(

f eihα·
)

(x − h),

where hα = (h1a(α1), . . . , hna(αn)).
(iii) This property is easily obtained from the integral definition of the Riesz transform

and the fractional Riesz transform. We omit the details.

This finishes the proof of proposition 2.2. �

Lemma 2.3. (FRFT inversion theorem) ([15]) Suppose f ∈ S (Rn). Then

f (x) =

∫
Rn
Fα( f )(u)K−α(u, x)du, a.e. x ∈ Rn.

By Definition 1.3 and Lemma 2.3, the jth fractional Riesz transform of order α can
be rewritten as

(Rαj f )(x) =

[
F−α

(
−i

ũ j

|ũ|
(Fα f )(u)

)]
(x).

Denote mαj (u) := −iũ j/|ũ|. It can be seen that the fractional Riesz transform of a
function f can be decomposed into three simpler operators, according to the diagram
of Fig. 2.1:

(i) FRFT of order α, g(u) = (Fα f )(u);
(ii) multiplication by a fractional Lp multiplier, h(u) = mαj (u)g(u);

(iii) FRFT of order −α, (Rαj f )(x) = (F−αh)(x)

Consider a 2-dimensional fractional Riesz transform as an example. It can be seen
from Definition 1.3 that the fractional Riesz transform of order α is a phase-shift con-
verter that multiplies the positive portion in the α-order fractional Fourier domain of
signal f by −i; in other words, it shifts the phase by −π/2 while the negative portion
of Fα f is shifted by π/2. It is also an amplitude reducer that multiplies the amplitude
in the α-order fractional Fourier domain of signal f by ũ j/|ũ|, as shown in Fig. 2.2.

Next, we establish the Lp(Rn) boundedness of the fractional Riesz transform.
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f (x) Fα
⊗

mαj (u)

F−α (Rαj f )(x)
g(u) h(u)

Figure 2.1: The decomposition of the jth fractional Riesz transform.

Im U

Re U

u

(a)

Im V

Re V

u

(b)

x1

ω1

u1

Fα1
F π

2

(c)

x2

ω2

u2

Fα2F π
2

(d)

Figure 2.2: (a) the original signal: U = (Fα f )(u); (b) after fractional Riesz transform of order α:
V = (Fα(Rα

j f )(u); (c)-(d) rotations of the time-frequency planes, u = (u1, u2), x = (x1, x2), α = (α1, α2).

Theorem 2.4. For all 1 < p < ∞, there exists a positive constant C such that∥∥∥Rαj ( f )
∥∥∥

Lp ≤ C ‖ f ‖Lp ,

for all f in S (Rn).

Proof. From the Lp boundedness of the Riesz transform in [18] with Theorem 2.1.4, it
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follows that

∥∥∥Rαj ( f )
∥∥∥

Lp =

(∫
Rn

∣∣∣∣cne−α(x)
∫
Rn

y j

|y|n+1 f (x − y)eα(x − y)dy
∣∣∣∣pdx

) 1
p

=
∥∥∥R j( f eα)

∥∥∥
Lp

≤ C‖ f ‖Lp ,

for all f in S (Rn). �

As a consequence of Definition 1.3, we derive the following identity for the frac-
tional Riesz transform.

Theorem 2.5. The fractional Riesz transforms satisty

n∑
j=1

(
Rαj

)2
= −I, on L2(Rn),

where I is the identity operator.

Proof. Use the FRFT and the identity
∑n

j=1

(
−iũ j/|ũ|

)2
= −1 to obtain

Fα

 n∑
j=1

(
Rαj

)2
f

 (u) =

n∑
j=1

(
−i

ũ j

|ũ|

)2

Fα( f )(u)

= − Fα( f )(u),

for any f in L2(Rn). �

2.2. The boundedness of singular integral operators with chirp functions on rotation-
invariant spaces

Just like the Riesz transforms, the fractional Riesz transforms are singular integral
operators. In fact they are special cases of more general singular integral operators
whose kernels K are equipped with chirp functions

Tα( f )(x) = p.v.
∫
Rn

e−α(x)K(x, y)eα(y) f (y)dy = p.v.
∫
Rn

Kα(x, y) f (y)dy.

When α = (π2 + k1π,
π
2 + k2π, . . . ,

π
2 + knπ), k j ∈ Z, Tα can be regarded as the classical

singular integral operators:

T ( f )(x) = p.v.
∫
Rn

K(x, y) f (y)dy.

Then, we consider the boundedness of Tα on rotation invariant Banach spaces.
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Definition 2.6. Suppose that (X, ‖ · ‖X) is a Banach function space of complex-valued
functions defined on Rn. We say that X a rotation-invariant space if

‖eα f ‖X = ‖ f ‖X,

for any f ∈ X, where α = (α1, . . . , αn) ∈ Rn with αk < πZ for all k = 1, 2, . . . , n.

When K satisfies suitable conditions, the boundedness of Tα and T on rotation
invariant space are equivalent.

Theorem 2.7. If X is a rotation invariant space, then T is bounded from X to X if and
only if Tα is bounded from X to X.

Proof. Let f ∈ X and T satisfy ‖T‖X→X < ∞. We have that

‖Tα( f )‖X = ‖T (eα f )‖X ≤ C‖eα f ‖X = C‖ f ‖X.

Conversely, for ‖Tα‖X→X < ∞, we obtain

‖T ( f )‖X = ‖e−αT ( f )‖X = ‖Tα(e−α f )‖X ≤ C‖e−α f ‖X = C‖ f ‖X.

Hence, the theorem follows. �

3. Application of the fractional Riesz transform in partial differential equations

The fractional Riesz transforms can be used to reconcile various combinations of
partial derivatives of functions. We first established the derivative formula of the FRFT.

Lemma 3.1. (FRFT derivative formula) Suppose that f ∈ L1(Rn). If eα f is absolutely
continuous on Rn with respect to the kth variable, we have

Fα

(
e−α

∂[eα f ]
∂yk

)
(x) = ixk cscαkFα( f )(x),

where x = (x1, x2, . . . , xn) and α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ, k = 1, 2, . . . , n.

Proof. Let y = (y1, . . . , yn) ∈ Rn. Since eα f is absolutely continuous on Rn with respect
to the kth variable, we can get that ∂[eα(y) f (y)]

∂yk
∈ L1(Rn). For f ∈ L1(Rn), we have

Fα

(
e−α(y)

∂[eα(y) f (y)]
∂yk

)
(x) =

c(α)(√
2π

)n

∫
Rn

(
e−α(y)

∂[eα(y) f (y)]
∂yk

)
eα(y)

× eα(x)e−i
∑n

j=1 x jy j cscα jdy

=
c(α)(√

2π
)n eα(x)

∫
Rn

∂[eα(y) f (y)]
∂yk

e−i
∑n

j=1 x jy j cscα jdy
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=
c(α)eα(x)(√

2π
)n

∫
Rn−1

∫
R

∂[eα(y) f (y)]
∂yk

e−ixkyk cscαkdyk

×

n∏
j=1, j,k

e−ix jy j cscα j

n∏
j=1, j,k

dy j.

As eα f is absolutely continuous on Rn with respect to the kth variable, integration by
parts yields∫

R

∂[eα(y) f (y)]
∂yk

e−ixkyk cscαkdyk = ixk cscαk

∫
R

eα(y) f (y)e−ixkyk cscαkdyk.

Then

Fα

(
e−α(y)

∂[eα(y) f (y)]
∂yk

)
(x) = ixk cscαk

c(α)

(
√

2π)n

∫
Rn

eα(y) f (y)eα(x)e−i
∑n

j=1 x jy j cscα jdy

= ixk cscαkFα( f )(x),

and this completes the proof of the lemma. �

Lemma 3.2. (FRFT derivative formula) Suppose that f ∈ L1(Rn) and xk f (x) ∈ L1(Rn).
Then, we have

∂(e−α(x)Fα( f )(x))
∂xk

= e−α(x)Fα(−iyk cscαk f (y))(x),

for α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ, k = 1, 2, . . . , n.

Proof. Let Ek = (0, . . . , 0, δ, 0, . . . , 0), δ , 0, and let δ be the kth variable. Let
ỹ = (ỹ1, . . . , ỹn) = (y1 cscα1, . . . , yn cscαn). Then

∂(e−α(x)Fα( f )(x))
∂xk

= lim
δ→0

e−α(x + Ek)Fα( f )(x + Ek) − e−α(x)Fα( f )(x)
δ

= lim
δ→0

1
δ

( ∫
Rn

c(α)(√
2π

)n f (y)eα(y)e−i(x+Ek)·ỹdy

−

∫
Rn

c(α)(√
2π

)n f (y)eα(y)e−ix·ỹdy
)

= lim
δ→0

1
δ

∫
Rn

c(α)(√
2π

)n f (y)eα(y)e−ix·ỹ(e−iδỹk − 1)dy

 .
By | e

−iδỹk−1
δ
| ≤ |ỹk|, xk f (x) ∈ L1(Rn) and the Lebesgue dominated convergence theorem
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we write

∂(e−α(x)Fα( f )(x))
∂xk

=

∫
Rn

c(α)(√
2π

)n f (y)eα(y)e−ix·ỹ
[
lim
δ→0

1
δ

(e−iδỹk − 1)
]

dy

=

∫
Rn

c(α)(√
2π

)n f (y)eα(y)e−ix·ỹ(−iỹk)dy

= e−α(x)Fα(−iyk cscαk f (y))(x),

This proves the claim. �

3.1. A priori bounds in partial differential equations
We next discuss applications of Rαj related to the priori bounds.

Theorem 3.3. Suppose that f ∈ S (R2). Then, we have the a priori bound∥∥∥∥∂(eα f )
∂y1

∥∥∥∥
Lp

+
∥∥∥∥∂(eα f )
∂y2

∥∥∥∥
Lp
≤ C

∥∥∥∥e−α
∂(eα f )
∂y1

+ ieα
∂(eα f )
∂y2

∥∥∥∥
Lp
,

where 1 < p < ∞, α = (α1, α2) ∈ R2 with αk < πZ, k = 1, 2.

To prove Theorem 3.3, we need the following lemma.

Lemma 3.4. Let f ∈ S (R2) and Let y = (y1, y2) ∈ R2. We have

e−α(y)
∂(eα f )
∂y j

= −Rαj (Rα1 − iRα2 )
(
e−α

∂(eα f )
∂y1

+ ieα
∂(eα f )
∂y2

)
(y),

for j = 1, 2 and α = (α1, α2) ∈ R2 with αk < πZ, k = 1, 2.

Proof. Taking the FRFT of the above identity, we obtain

Fα

(
−Rαj (Rα1 − iRα2 )

(
e−α

∂(eα f )
∂y1

+ ieα
∂(eα f )
∂y2

))
(x)

= −
ix̃ j

|x̃|

(
ix̃1

|x̃|
+

ix̃2

|x̃|

)
(ix1 cscα1Fα( f )(x) − x2 cscα2Fα( f )(x))

= −
ix̃ j

|x̃|

(
−|x̃1|

2

|x̃|
+
−|x̃2|

2

|x̃|

)
Fα( f )(x)

= ix j cscα jFα( f )(x).

By Lemma 3.1, we have

Fα

(
e−α

∂(eα f )
∂y j

)
(x) = ix j cscα jFα( f )(x).

13



Applying the inverse FRFT on the above identity we deduce the desired result. �

Now, we return to prove Theorem 3.3.

Proof. By Lemma 3.1 and Theorem 2.4, we have∥∥∥∥∥∥∂(eα f )
∂y j

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥ − Rαj (Rα1 − iRα2 )
(
e−α

∂(eα f )
∂y1

+ ieα
∂(eα f )
∂y2

)∥∥∥∥∥∥
Lp

≤ C
∥∥∥∥∥e−α

∂(eα f )
∂y1

+ ieα
∂(eα f )
∂y2

∥∥∥∥∥
Lp
,

which completes the proof of the theorem. �

Remark 3.1. When α = (π2 + k1π,
π
2 + k2π, . . . ,

π
2 + knπ), k j ∈ Z for j = 1, 2, . . . ,m,

Theorem 3.3 reduces to Proposition 4 in [23, pp.60].

In the sequel, ∆ =
∑n

j=1
∂2

∂y2
j

denotes the usual Laplacian on Rn.

Lemma 3.5. For f ∈ S (Rn), 1 ≤ j, k ≤ n, and x ∈ Rn we have

e−α(x)
∂2(eα(x) f (x))

∂xkx j
=

(
−Rαk Rαj e−α∆(eα f )

)
(x),

where α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ.

Proof. Applying the FRFT on the expression on the left we write

Fα

(
e−α

∂2 (eα f )
∂yk∂y j

)
(x) = Fα

e−α∂
(
eα

e−α∂(eα f )
∂y j

)
∂yk

 (x)

= ixk cscαkFα

(
e−α

∂[eα f ]
∂y j

)
(x)

= ixk cscαkix j cscα jFα( f )(x)

= −

(
ix̃k

|x̃|

) (
ix̃ j

|x̃|

)
(−|x̃|2)Fα( f )(x)

= −

(
ix̃k

|x̃|

) (
ix̃ j

|x̃|

)
Fα

(
e−α

∂2(eα f )
∂2y1

+ · · · + e−α
∂2(eα f )
∂2yn

)
(x)

= Fα(−Rαk Rαj e−α∆(eα f ))(x).

Applying the inverse FRFT on the above identity, we obtain the desired result. �

Remark 3.2. When α = (π2 + k1π,
π
2 + k2π, . . . ,

π
2 + knπ), k j ∈ Z for j = 1, 2, . . . ,m,

Lemma 3.5 reduces to Proposition 5.1.17 in [10].
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Theorem 3.6. Suppose f ∈ S (Rn) and ∆(eα f ) =
∑n

j=1
∂2(eα f )
∂y2

j
. Then we have the priori

bound ∥∥∥∥∥∥∂2(eα f )
∂yk∂y j

∥∥∥∥∥∥
Lp

≤ C
∥∥∥∥∆(eα f )

∥∥∥∥
Lp
,

for α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ, k = 1, 2, . . . , n.

Proof. According to Lemma 3.5 and Theorem 2.4, we obtain that∥∥∥∥∥∥∂2(eα f )
∂yk∂y j

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥e−α
∂2(eα f )
∂yk∂y j

∥∥∥∥∥∥
Lp

=
∥∥∥−Rαj Rαk e−α∆(eα f )

∥∥∥
Lp

≤ C‖∆(eα f )‖Lp ,

which completes the proof of the theorem. �

3.2. Laplace’s equation with a chirp
Next we we study a version of Laplace’s equation.

Example 3.1. Let f ∈ L2(Rn) and suppose that u ∈ S ′(Rn) satisfies the following form
of Laplace’s equation with a chirp

∆(eαu) = eα f . (3.1)

We express all second-order derivatives of u in terms of the fractional Riesz trans-
form of f . A similar approach can be found in [6]. In order to accomplish this, we
make use of the following lemma.

Lemma 3.7. ([10]) Suppose that u ∈ S ′(Rn). If û is supported at {0}, then u is a
polynomial.

To solve equation (3.1), we first show that if u satisfies (3.1), then the tempered
distribution

Fα(e−α∂ j∂k(eαu) + Rαj Rαk f )

is supported at {0}. Then from Lemma 3.7, we obtain that

e−α∂ j∂k(eαu) = −Rαj Rαk f + e−αP,

where P is a polynomial of n variables (that depends on j and k). This provides a
way of expressing the mixed partial derivatives of eαu in terms of the fractional Riesz
transforms of f .

To prove that the tempered distribution Fα(e−α∂ j∂k(eαu) + Rα
j R

α
k f ) is supported at

{0}, we pick γ ∈ S (Rn) whose support does not contain the origin. Then, γ vanishes
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in a neighborhood of zero. Fix η ∈ C∞, which is equal to 1 on the support of γ and
vanishes in a smaller neighborhood of zero. Define

ζ(ξ) = −η(ξ)
(
−

iξ̃ j

|ξ̃|

) (
−

iξ̃k

|ξ̃|

)
, ξ ∈ Rn,

and we notice that ζ and all of its derivatives are both bounded C∞ functions. Addi-
tionally

η(ξ)(iξ̃ j)(iξ̃k) = ζ(ξ)(−|ξ̃|2), ξ ∈ Rn.

Taking the FRFT of both side of (3.1) we obtain that

Fα(e−α∆(eαu))(ξ) = −|ξ̃|2Fα(u)(ξ) = Fα( f )(ξ).

Multiplying by ζ, we write

ζ(ξ)Fα(e−α∆(eαu))(ξ) = −ζ(ξ)|ξ̃|2Fα(u)(ξ) = ζ(ξ)Fα( f )(ξ).

Since for all 1 ≤ j, k ≤ n,

〈Fα(e−α∂ j∂k(eαu)), γ〉 = 〈(iξ̃ j)(iξ̃k)Fα(u), γ〉
= 〈(iξ̃ j)(iξ̃k)Fα(u), ηγ〉
= 〈η(ξ)(iξ̃ j)(iξ̃k)Fα(u), γ〉

= 〈ζ(ξ)(−|ξ̃|2)Fα(u), γ〉
= 〈ζ(ξ)Fα( f ), γ〉

=
〈
−η(ξ)

(
−iξ̃ j/|ξ̃|

) (
−iξ̃k/|ξ̃|

)
Fα, γ

〉
= 〈−η(ξ)Fα(Rαj Rαk ( f )), γ〉

= − 〈Fα(Rαj Rαk ( f )), ηγ〉

= − 〈Fα(Rαj Rαk ( f )), γ〉,

and since the support of γ ∈ S (Rn) does not contain the origin, it follows that the
function Fα(e−α∂ j∂k(eαu) + Rαj Rαk ( f )) is supported at {0}.

4. Numerical simulation of fractional multipliers

In this section, we apply the fractional Riesz transform to an image with the help
of the FRFT discrete algorithm ([1, 2, 27]).

As shown in Fig. 4.1, (a) is the original 2-dimensional grayscale image with 400
pixels × 400 pixels; (c) is the 2-dimensional grayscale image after the Riesz transform
of order (π/4, π/4). In the continuous case, Fig. 4.1 (a) can be regarded as a function
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of R2

f (x1, x2) =

{
0, (x1, x2) ∈ [0, 200]2 ∪ [200, 400]2,
255, otherwise.

Fig. 4.1 (b) and (d) are the 3-dimensional color graphs of f and R(π/4,π/4)
x1 f .

Recall that the fractional Fourier multiplier of the fractional Riesz transform Rαj is

mαj (u) := −i
ũ j

|ũ|
.

Graphs (a) and (b) in Fig. 4.2 indicate that the fractional Riesz transform has the effect
of amplitude reduction.

By comparing (c)/(e) and (d)/(f) in Fig. 4.2, as well as the real/imaginary part
of Fα f and the imaginary/real part of Fα(Rαj f ) accordingly, it can be seen that the
fractional Riesz transform has the effect of phase shifting.

Above all, Fig. 4.2 shows that the fractional multiplier of Rαj is −iũ j/|ũ|, and thus,
the fractional Riesz transform is not only a phase-shift converter but also an amplitude
attenuator. This circumstance is quite different from that of the fractional multiplier of
Hα, which is only a phase-shift converter with multiplier −isgn((π − α)u).

(a) (b)

(c) (d)

Figure 4.1: Fractional Riesz transform of order (π/4, π/4) of a image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Phase-shifting and amplitude-reducing effect of the fractional Riesz transform in the frac-
tional Fourier domain of order α = (π/4, π/4) on an image.

5. Application of the fractional Riesz transforms in edge detection

Edge detection is a key technology in image processing. It is widely used in bio-
metrics, image understanding, visual attention and other fields. Commonly used image
feature extraction methods include the Roberts operator, Prewitt operator, Sobel oper-
ator, Laplacian operator and Canny operator. These algorithms extract features based
on the gradient changes in the pixel amplitudes. In [16, 33, 34], the authors introduced
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the image edge detection methods based on the Riesz transform, which can avoid the
influence of uneven illumination. Moreover, the Riesz transform has the characteristics
of isotropy; therefore, the Riesz transform has more advantages in feature extraction.
Based on the principle of Riesz transform edge detection, edge detection based on the
fractional Riesz transform is proposed in this section.

When processing the two-dimensional signal f (x), the fractional Riesz transform
of f (x) can be expressed as

(Rα1 f )(x) = cn p.v. e−α(x)
(
(eα f ) ∗

x1

|x|3

)
(x), (5.1)

(Rα2 f )(x) = cn p.v. e−α(x)
(
(eα f ) ∗

x2

|x|3

)
(x), (5.2)

or

(Rα1 f )(x) =

F−α −i
u1 cscα1√

(u1 cscα1)2 + (u2 cscα2)2
(Fα f )(u)

 (x), (5.3)

(Rα2 f )(x) =

F−α −i
u2 cscα2√

(u1 cscα1)2 + (u2 cscα2)2
(Fα f )(u)

 (x). (5.4)

For an image f (x), the monogenic signal is defined as the combination of f (x) and
its fractional Riesz transform.

(p(x), q1(x), q2(x)) = ( f (x), (Rα1 f )(x), (Rα2 f )(x)).

Therefore, the local amplitude value A(x), local orientation θ(x) and local phase P(x)
in the monogenic signal in the image can be expressed as

A(x) =
√

p(x)2 + |q1(x)|2 + |q2(x)|2

θ(x) = tan−1
(∣∣∣∣∣q2(x)

q1(x)

∣∣∣∣∣)
P(x) = tan−1

 p(x)√
|q1(x)|2 + |q2(x)|2

 .
In this paper, we use the fractional Riesz transform in the form of (5.3) and (5.4)

for algorithm design because the fractional Riesz transform can be decomposed into a
combination of a FRFT, inverse FRFT and multiplier. Because the FRFT and inverse
FRFT have fast algorithms, compared with the form of (5.1) and (5.2), the computa-
tional complexity of the algorithm in the form of (5.3) and (5.4) is reduced. Thus, a
faster and more efficient operation is realized.
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(a) (b)

Figure 5.1: Original image and edge detection based on the fractional Riesz transform of order
([π/2, π/2]) (i.e., the classical Riesz transform)

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Extract the information of a specific position in the lateral direction of the image

The simulation experiment will be conducted by using the classical Lena image
((a) in Fig. 5.1) as the test image. To better highlight the results of our simulation
experiment, we choose an appropriate threshold value to binarize the images after the
experiment in such a way that our experimental results show a more obvious effect.
Graph (b) in Fig. 5.1 illustrates the result of edge detection based on the fractional
Riesz transform of order ([π/2, π/2]) (i.e., the classical Riesz transform).
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Extract the information of specific position in the longitudinal direction of the image

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Extract the information of the specific position in the main diagonal of the image
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Extract the information of the specific position in the counter diagonal of the image

Fig. 5.2 shows that when α1 = π/2 is fixed, if α2 decreases from π/2 ((d), (e), (f)
in Fig. 5.2), we extract information about the lateral up position. If α2 increases from
π/2 ((a), (b), (c) in Fig. 5.2), we extract information about the lateral down position. In
conclusion, by fixed α1 = π/2, we can adjust α2 to extract information on the specific
position in the lateral direction.

Fig. 5.3 indicates that when α2 = π/2 is fixed and α1 decreases from π/2 ((a),
(b), (c) in Fig. 5.3), the longitudinal right position information is extracted. As α1

increases from π/2 ((d), (e), (f) in Fig. 5.3), we extract the longitudinal left position
information. In conclusion, when fixing α2 = π/2, we can extract information of the
specific longitudinal positions by adjusting α1.

Fig. 5.4 shows that when α1 and α2 increase or decrease the same size from π/2,
the information on the specific direction in the main diagonal is extracted.

Fig. 5.5 indicates that when α1 increases from π/2 and α2 decreases from π/2 by
the same size, the information on the specific direction in the antidiagonal is extracted.

The preceding simulation provides a new edge detection tool based on the the frac-
tional Riesz transform, that extracts both global features and local features of images.
This numerical implementation confirms the belief expressed in [26] that amplitude,
phase, and direction information can be simultaneously extracted by controlling the
order of the fractional Riesz transform. We predict that very comprehensive analysis
and processing of multidimensional signals, such as images, videos, 3D meshes and
animations, can be achieved via the fractional Riesz transforms.
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6. Chirp Hardy spaces

In this section, we naturally consider the boundedness of a singular integral opera-
tor with a chirp function on non-rotation invariant space, such as Hardy spaces. Hardy
spaces are spaces of distributions which become more singular as p decreases and can
be regarded as a substitute for Lp when p < 1.

6.1. Chirp Hardy spaces and chirp BMO spaces
We recall the real variable characterization and atom characterization of Hardy

spaces.

Definition 6.1. ([4, 10]) Let f be a bounded tempered distribution on Rn and let 0 <
p < ∞. We say that f lies in the Hardy spaces Hp(Rn) if the Poisson maximal function

M( f ; P)(x) = sup
t>0
|(Pt ∗ f )(x)|

lies in Lp(Rn), where the Poisson kernel P is the function

P(x) =
Γ( n+1

2 )

π
n+1

2

1

(1 + |x|2)
n+1

2

.

For t > 0, let Pt(x) = t−nP(t−1x). If this is the case, we set

‖ f ‖Hp = ‖M( f ; P)‖Lp .

Remark 6.1. Suppose that f ∈ S (Rn). We have

‖ f ‖Hp =

∥∥∥∥∥∥sup
t>0
| (Pt ∗ f ) |

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥sup
t>0

∣∣∣∣∣∫
Rn

Pt(· − y) f (y)dy
∣∣∣∣∣
∥∥∥∥∥∥

Lp

,

‖eα f ‖Hp =

∥∥∥∥∥∥sup
t>0
|(Pt ∗ (eα f ))|

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥sup
t>0

∣∣∣∣∣∫
Rn

Pt(· − y)eα(y) f (y)dy
∣∣∣∣∣
∥∥∥∥∥∥

Lp

.

We can clearly see that ‖eα f ‖Hp depends on α, that is,

‖ f ‖Hp , ‖eα f ‖Hp .

Note that Hp(Rn) is not a rotation-invariant space.

Now let us consider the boundedness of singular integral operators with chirp func-
tions in Hardy space when kernel K satisfies certain size and smoothness conditions.
Let us recall the definition of the δ-Calderón-Zygmund operator.

Definition 6.2. ([17]) Let T be a bounded linear operator. We say that T is a δ-
Calderón-Zygmund operator if T is bounded on L2(Rn) and K is a continuous function
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on Rn × Rn \ {(x, y) : x , y} that satisfies

(1) |K(x, y)| ≤ C
|x−y|n , x , y;

(2) |K(x, y) − K(x, z)| + |K(y, x) − K(z, x)| ≤ C |y−z|δ
|x−z|n+δ , if |x − z| > 2|y − z|, 0 < δ ≤ 1;

(3) For f , g ∈ S (Rn) and supp f ∩ supp g = ∅, one has

(T f , g) =

∫
K(x, y) f (y)g(x)dydx.

Lemma 6.3. ([17]) Suppose that T is a δ-Calderón-Zygmund operator and its conju-
gate operator T ∗ = 0. Then, T can be extended to the bounded operator from Hp(Rn)
to Hp(Rn), where 0 < δ ≤ 1 and n

n+δ
< p ≤ 1.

By standard calculations, we have the following estimates for Kα:

|Kα(x, y) − Kα(x, z)| ≤ |K(x, y) − K(x, z)| + Lα(y, z)|K(x, z)||y − z|,

where

Lα(y, z) = |Oeα(w)| =

√√
n∑

k=1

|eα(w) cotαkwk|
2,

and w = z + (θ1(y1 − z1), . . . , θn(yn − zn))) for θ j ∈ (0, 1). It is known that for α =

(π2 + k1π,
π
2 + k2π, . . . ,

π
2 + knπ), Kα satisfies the δ-Calderón-Zygmund operator kernel

condition (2). It is obvious that Kα satisfies (1) in Definition 6.2, but (2) in Definition
6.2 is not guaranteed.

We now define a new class of Hardy space with chirp functions.

Definition 6.4. Let f be a bounded tempered distribution on Rn and let 0 < p < ∞. We
say that f lies in the chirp Hardy space Hp

α(Rn) for α = (α1, . . . , αn) ∈ Rn with αk < πZ
for all k = 1, 2, . . . , n, if the Poisson maximal function with chirp function

Mα( f ; P) = sup
t>0
|(Pt ∗ (eα f ))|

lies in Lp(Rn). If this is the case, we set

‖ f ‖Hp
α

= ‖Mα( f ; P)‖Lp .

Lemma 6.5. ([24]) Suppose f ∈ LP(Rn), p > 1, and f has bounded support. Then
f ∈ H1(Rn) if and only if

∫
Rn f (x)dx = 0.

Remark 6.2. We provide an example indicating that H1
α(R) is not contained in H1(R).

Let f (x) = e−α(x)e−ixχ[−π,π](x) with αk <
π
2Z for all k = 1, 2, . . . , n. From f ∈ H1

α(R) if
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and only if eα f ∈ H1(R) and by Lemma 6.5 we infer that∫
R

eαe−α(x)e−ixχ[−π,π](x) dx = 0,

and ∫
R

e−α(x)e−ixχ[−π,π](x) dx , 0,

namely, f ∈ H1
α(R) and f < H1(R).

Lemma 6.6. ([11]) The Hardy space Hp(Rn) is a complete space.

Theorem 6.7. The chirp Hardy space Hp
α(Rn) is a complete space.

Proof. Let { fk} be a Cauchy sequence in Hp
α(Rn). Then, {eα fk} is a Cauchy sequence in

Hp(Rn). By Lemma 6.6, there exists an f̄ ∈ Hp(Rn) such that

lim
k→∞
‖eα fk − f̄ ‖Hp = 0.

The above identity is rewritten as

lim
k→∞
‖ fk − e−α f̄ ‖Hp

α
= 0.

Since f̄ ∈ Hp(Rn), we obtain f := e−α f̄ ∈ Hp
α(Rn), which completes the proof of the

theorem. �

It is known that the dual space of H1 is the BMO space. To study the dual space of
the chirp Hardy space, we define a new BMO space with a chirp function as follows.

Definition 6.8. Suppose that f is a locally integrable function on Rn. Define the chirp
BMO space or BMOα as

BMOα(Rn) = { f : ‖ f ‖BMOα < ∞}.

Let
‖ f ‖BMOα = sup

Q

1
|Q|

∫
Q
|eα(x) f (x) − AvgQ(eα f )|dx,

where the supremum is taken over all cubes Q in Rn and α = (α1, . . . , αn) ∈ Rn with
αk < πZ, k = 1, 2, . . . , n.

Lemma 6.9. ([7, 11]) BMO is a complete space.

Theorem 6.10. BMOα is complete.

The proof follows the same pattern as that of Theorem 6.7 and is based on Lemma
6.9.
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6.2. Dual spaces of chirp Hardy spaces
Let α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ for all k = 1, 2, . . . , n. We discuss the

dual spaces of chirp Hardy spaces Hp
α(Rn) for 0 < p ≤ 1. When p = 1, we have the

following theorem.

Theorem 6.11. (H1
α)
∗(Rn) = BMO−α(Rn).

Lemma 6.12. ([7], [8], [9]) (H1)∗(Rn) = BMO(Rn).

Now, we will go back to prove Theorem 6.11.

Proof. For any f ∈ H1
α(R

n) and g ∈ (H1
α)
∗(Rn), one has

〈 f , g〉 = 〈e−αeα f , g〉 = 〈eα f , e−αg〉.

From f ∈ H1
α(R

n) if and only if eα f ∈ H1(Rn) and Lemma 6.12, we deduce that, e−αg
lies in BMO(Rn), therefore g ∈ BMO−α(Rn), completing the proof of the theorem. �

Remark 6.3. When α = (π2 + k1π,
π
2 + k2π, . . . ,

π
2 + knπ), k j ∈ Z for j = 1, 2, . . . ,m,

(H1
α)
∗(Rn) = BMO−α(Rn) reduces to (H1)∗(Rn) = BMO(Rn).

We proceed by considering the dual space of the chirp Hardy space when 0 < p <
1.

Lemma 6.13. ([25]) For g ∈ L1
loc(R

n), Q is an any cube in Rn and s ∈ Z+. Then there
exists a unique polynomial PQ(g) whose degree does not exceed s that satisfies∫

Q
[g(x) − PQ(g)(x)]xαdx = 0, 0 ≤ |α| ≤ s.

Definition 6.14. ([25]) For s ∈ Z+, 0 ≤ [nβ] ≤ s and 1 ≤ q′ ≤ ∞, the Campanato-
Meyers space L(β, q′, s)(Rn) is defined as the set of locally integrable functions g that
satisfy

‖g‖L(β,q′,s) = sup
Q⊂Rn
|Q|−β

[∫
Q
|g(x) − PQ(g)(x)|q

′ dx
|Q|

] 1
q′

< ∞,

where PQ(g) is determined by Lemma 6.13.

Lemma 6.15. ([5, 21]) (Hp)∗(Rn) = L( 1
p , q

′, s)(Rn), where 0 < p < 1 ≤ q ≤ ∞, s ∈ Z,
s ≥ n( 1

p − 1) and 1/q + 1/q′ = 1.

Now let us define a new Campanato-Meyers space with chirps as follows:
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Definition 6.16. For s ∈ Z+, 0 ≤ [nβ] ≤ s and 1 ≤ q′ ≤ ∞. The chirp Campanato-
Meyers space Lα(β, q′, s)(Rn) is defined as the set of locally integrable functions g that
satisfy

‖g‖Lα(β,q′,s) = sup
Q⊂Rn
|Q|−β

[∫
Q
|eα(x)g(x) − PQ(eαg)(x)|q

′ dx
|Q|

] 1
q′

< ∞,

where PQ(eαg) is determined by Lemma 6.13.

Theorem 6.17. (Hp
α)∗(Rn) = L−α( 1

p , q
′, s)(Rn), where 0 < p < 1 ≤ q ≤ ∞, s ∈ Z,

s ≥ n( 1
p − 1) and 1/q + 1/q′ = 1.

Proof. As in Theorem 6.11, the proof of this theorem can be obtained using Lemma
6.15; we omit the details. �

Remark 6.4. When 0 < p < 1 and α = (π2 + k1π,
π
2 + k2π, . . . ,

π
2 + knπ), k j ∈ Z for

j = 1, 2, . . . ,m, (Hp
α)∗(Rn) = L−α( 1

p , q
′, s)(Rn) reduces to (Hp)∗(Rn) = L( 1

p , q
′, s)(Rn).

6.3. Characterization of the boundedness of singular integral operators with chirp
functions on chirp Hardy spaces

In this subsection we obtain a characterization of the boundedness of Tα in Hp
α.

Theorem 6.18. Tα is bounded from Hp
α(Rn) to Hp

α(Rn) if and only if T is bounded from
Hp(Rn) to Hp(Rn), where α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ for all k = 1, 2, . . . , n.

Proof. Suppose that f ∈ S ′ and ‖Tα‖Hp
α→Hp

α
< ∞. Then, we have

‖T ( f )‖Hp =

∥∥∥∥∥∥ sup
t>0
|Pt ∗ (eα(e−αT f ))|

∥∥∥∥∥∥
Lp

= ‖Tα(e−α f )‖Hp
α

≤ C‖e−α f ‖Hp
α

= C‖ f ‖Hp .

Conversely, when ‖T‖Hp→Hp < ∞, we obtain

‖Tα( f )‖Hp
α

=

∥∥∥∥∥∥ sup
t>0
|Pt ∗ (T (eα f ))|

∥∥∥∥∥∥
Lp

= ‖T (eα f )‖Hp ≤ C‖eα f ‖Hp = C‖ f ‖Hp
α
.

Hence, the claim follows. �

Corollary 6.19. Let α = (α1, α2, . . . , αn) ∈ Rn with αk < πZ for all k = 1, 2, . . . , n.
Then the fractional Riesz transform Rαj is bounded from Hp

α(Rn) to Hp
α(Rn) if and only

if the Riesz transform R j is bounded from Hp(Rn) to Hp(Rn).
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7. Conclusions

In this paper, we introduced the fractional Riesz transforms and and studied certain
a priori estimates of them in partial differential equations. We also studied properties
of chirp singular integral operators, chirp Hardy spaces and chirp BMO spaces. We
used the fractional Riesz transforms in concrete applications in edge detection with
surprisingly good results. Our experiments indicate that edge detection can extract
local information in any direction by adjusting the order of the fractional Riesz trans-
form. The algorithm complexity of the fractional Riesz transform in (5.3) and (5.4) is
reduced compared to that of the fractional Riesz transform of (5.1) and (5.2).
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